
On polynomials over valued fields 
 

 

 

 

Azadeh Nikseresht 

 
Department of Mathematics, Ayatollah Boroujerdi University, Boroujerd, Iran. 

 

 
 
 
 

Abstract. Polynomials are well known for their ability to improve their properties and for their applicability in the 

interdisciplinary fields of engineering and science. Many problems arising in engineering, physics, chemistry and other 

disciplines of science are mathematically constructed by them. Polynomials are originally algebraic structures which are 

investigated in many branches of mathematics. The investigation of factorization, irreducibility and roots of polynomials 

are from the most important aspects of study of polynomials. This paper is devoted to explore polynomials from an 

algebraic view point in valuation theory. The special feature is the focus on application of valuation theory to explore some 

properties of polynomials. More precisely, we present the newest irreducibility criteria, and some results in relation to the 

roots of polynomials with coefficients in certain valued fields. In this study, it is used some applicable tools of valuation 

theory such as lifting of polynomials. 
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I.Introduction 

 

Polynomials are one of the significant concepts of mathematics which appear in many areas of science. They are used 
to form polynomial equations, which encode a wide range of problems from elementary word problems to 
complicated scientific problems; they are used to define polynomials functions, which appear in settings ranging from 
basic physics, chemistry and engineering to economics and social science. For example, a roller coaster would use 
polynomials to model the curves, while a civil engineer would use polynomials to design roads, buildings and other 
structures. Specially in mathematics, they are used in calculus and numerical analysis to approximate other functions 
or to construct polynomial rings and algebraic varieties, which are central concepts in algebra and valuation theory. 
Consequently, the comprehension of polynomials is important throughout multiple tasks because it holds a large 
position in various academic subjects. 
It is worthwhile mentioning that polynomials are originally algebraic structures investigated in many branches of 
mathematics, specially in valuation theory. Valuation theory is a branch of math, which forms a solid link between 
algebra, number theory and analysis. This paper is devoted to examine the newest research on polynomials with 
coefficients in valued fields. 
One of the most important aspects of studying polynomials is to determine whether a polynomial is irreducible or not. 
It is noted that the property of irreducibility depends on the nature of the coefficients that are accepted for the possible 
factors, that is, the field or ring to which the coefficients of the polynomial and its possible factors are supposed to 
belong. Irreducible polynomials appear naturally in the study of polynomial factorization and algebraic field 
extensions. In this paper, we present the latest irreducibility criteria, which generalize the classical and known ones in 
valuation theory. 
Moreover, one of the other subjects which holds a prominent position in investigating polynomials is to discuss the 
roots of polynomials. Finding roots of a polynomial is an extremely important work in math because many problems 
need to be solved by determining the roots of the polynomials. In fact, factorization of a polynomial and determination 
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of its roots are closely related to each other. This paper also deals with this object from an algebraic point of view over 
valued fields. More precisely, we study some results concerned with finding the roots of polynomials over valued 
fields under certain conditions. In this direction, it is used applicable tools of valuation theory such as minimal pairs, 
complete distinguished chains and lifting of polynomials, which are beneficial to obtain new results about 
polynomials. 
 
 

 

II.Preliminaries 
 

Valuation theory has become important through its applications in many fields of mathematics. It arose in the early 
part of the twentieth century in connection with number theory and has many important applications to math; specially 
to algebra, geometry and analysis: the classical application to the study of algebraic curves and to Dedekind and Prufer 
domains; the close connection to the famous resolution of the singularities problem; the study of the absolute Galois 
group of a field; the connection between ordering, valuations, and quadratic forms over a formally real field; the 
application to real algebraic geometry; the study of non-commutative rings; etc. Valuation theory has not only 
produced new methods which could be profitably used in number theoretical research, but it has also led to a change of 
viewpoint. The special feature of this paper is its focus on application of valuation theory to explore properties of 
polynomials. Throughout, we assume the reader to be familiar with the elementary notions of algebra and valuation 
theory (see for example [1-3]). 
Firstly, the basic notion that must be defined is the concept of a valued field.  
 
Definition 2.1 Let � be a field, � be a totally ordered abelian group and ∞ be a symbol that satisfies, for all 

� ∈ �, in the axioms: ∞ = ∞ + ∞ = � + ∞ = ∞ + �, and ∞ ≥ �. 
A valuation � of � is a surjective map  

 �: � → � ∪ {∞} 
which satisfies the following properties for all �, � ∈ �:  
1.  �(�) = ∞ ↔ � = 0,  
2.  �(��) = �(�) + �(�),  
 3.  �(� + �) ≥ min{�(�), �(�)}.  
(�, �) is called a valued field. For a valued field (�, �), � is said to be the value group of � and denoted by �(�). 
The set �� = {� ∈ �|�(�) ≥ 0} is said to be the valuation ring of � that has the unique maximal ideal �� = {� ∈
�|�(�) > 0}. ��/�� is called the residue field of � and denoted by �(�).  
 
Let � /�! be an extension of fields. A valued field (� , � ) is called an extension of a valued field (�!, �!) if 
� |"# = �!. This statement is denoted by (� , � )/(�!, �!) or briefly by � /�!. A valued field (�, �) is called 
henselian if � has a unique extension to every algebraic extension of K, and discrete if its value group is the ring of 

integers ℤ. When � is henselian, �̅ is denoted the unique extension of � to a fixed algebraic closure � of �. For an 

overfield �′ of � contained in �, we shall denote by �(�′) and �(�′) respectively the value group and the residue 
field of the valuation �′ of �′ obtained by restricting �̅ to �′. For any ' ∈ ��( and polynomial )(�) ∈ ��([�], we 
let ', and )̅(�) denote the canonical image of ' and )(�) in �(�′) and �(�′)[�], respectively. By the degree of 

an element ' ∈ �, we shall mean the degree of the extension �(')/� and denote it by deg '. 
After mentioning these necessary notions, let us recall some well-known and classical irreducibility criteria. We begin 
with Eisenstein’s criterion that gives a sufficient condition for a polynomial with integer coefficients to be irreducible 
over the rational numbers that is, for it to not be factorizable into the product of non-constant polynomials with rational 
coefficients. Both Eisenstein’ statement and proof are virtually identical to how we would formulate them today [4]. 
Eisenstein was actually concerned with the lemniscate, where the relevant question was irreducibility of polynomials 
with coefficients in the Gaussian integers, rather than in the ordinary integers, but, as he observed, the statement and 
proof are identical in either case. 

 
Theorem 2.2 (Eisenstein irreducibility criterion) Let )(�) = -.�/ + -!�/0! + ⋯ + -/  be a polynomial with 

coefficient in the ring ℤ of integers. Suppose that there exists a prime number 2 such that 
1.  -. is not divisible by 2 (2|-.),  
 2.  -3 is divisible by 2 for 1 ≤ 6 ≤ 7 (2|-3),  
 3.  -/ is not divisible by 2  (2 |-/).  
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)(�) is irreducible over the field ℚ of rational numbers.  
A polynomial satisfying above conditions is called an Eisenstein polynomial. 
 
Example: Consider the 2the cyclotomic polynomial  

 �:0! + �:0 + ⋯ + � + 1 = ;<0!
;0!  

On changing � to � + 1 it becomes  

 
(;=!)<0!
(;=!0!) = �:0! + >:

!?�:0 + ⋯ + @ :
:0!A 

and hence irreducible over ℚ. 
 
The Dumas criterion generalized the the Eisenstein’s criterion [5]. 

 
Theorem 2.3 (Dumas irreducibility criterion) Let )(�) = -.�/ + -!�/0! + ⋯ + -/  be a polynomial with 

coefficients in the ring ℤ. Suppose there exists a prime 2 whose exact power 2BC  dividing -3  (where D3 = ∞ if 

-3 = 0) satisfy 
 1.D. = 0,  
 2.(D3/6) > (D//7) for 1 ≤ 6 ≤ 7 − 1,  
 3.  gcd(D/ , 7) equals 1.  
Then )(�) is irreducible over ℚ.  
A polynomial satisfying above conditions is called an Eisenstein-Dumas polynomial. For example, for polynomial 
�F + 3� + 9� + 9, we can not use Eisenstein irreducibility criterion, but with choosing 2 = 3, D! = 1, D = 2, DF =
2, it is irreducible over ℚ by Dumas criterion. However, there are many polynomials where are not satisfied in the 
conditions of Dumas criterion. Here valuation theory can be used to extend the area where tests can be satisfied. A 
special kind of valuations defined below, which are from the most applicable valuations and used extensively in 
number theory and algebraic geometry, can be employed to generalize Dumas criterion as follows. 

 
Definition 2.4 For a given prime number 2, let �: stand for the mapping �:: ℚ∗ → ℤ defined as follows. Write any 

non zero rational number � = 2B K
L , 2|-M. Set �:(�) = D. Then 

 1.�:(0) = ∞,  
 2.�:(��) = �:(�) + �:(�),  
3.�:(� + �) ≥ min{�:(�), �:(�)}. 
�: is called the 2-adic valuation of ℚ. 
 
Kurschak presented Dumas criterion for fields with 2-adic valuations [6].  
 
Theorem 2.5 (Dumas criterion with p-adic valuations) Let )(�) = -.�/ + -!�/0! + ⋯ + -/ be a polynomial 

with coefficient in ℤ. Suppose there exists a prime 2 such that 
 1.�:(-.) = 0,  
 2.�:(-3)/6 > �:(-/)/7 for 1 ≤ 6 ≤ 7 − 1, and  
 3.�:(-/) is coprime to 7.  
Then )(�) is irreducible over ℚ.  

 
Theorem 2.6 (classical Schönemann irreducibility criterion) If a polynomial )(�) belonging to ℤ[�] has the 

form )(�) = N(�)O + 2P(�) where p is a prime number, 
 1.N(�) belonging to ℤ[�] is a monic polynomial which is irreducible modulo p,  
 2.N(�) is coprime to P(�) modulo 2, and  
 3. the degree of P(�) is less than the degree of )(�).  
Then )(�) is irreducible over ℚ.  
Eisenstein’s criterion is easily seen to be a particular case of Schönemann criterion [7] by setting N(�) = �.  
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III. New generalizations of irreducibility criteria and roots of polynomials with coefficients 

in valued fields 
Recently, some of researchers in valuation theory have worked on irredusility criteria. They try to generalize them in 
order that a wider range of polynomials can be examined. From almost the last three decades, a new series of papers 
have been published in math journals deal with this object. 
In 1995, Popescu and Zaharescu gave an irreducibility criterion for polynomials over a complete discrete rank one 
valued field, also named a local field (see [2] for the definition of such valued fields) which generalizes the usual 
Eisenstein irreducibility criterion as follows [8].  
 
Theorem 3.1  Let (�, �) be a complete discrete rank one valued field. Let  

 �(�) = �/ + -!�/0! + ⋯ + -/ 
be a polynomial of �[�]. Assume that �(-/) = Q is a positive integer relatively prime to 7. Then � is an irreducible 

polynomial if and only if �(-3) > 3O
/ , 1 ≤ 6 ≤ 7 − 1. 

 
More generally, Popescu and Zaharescu examined the structure of irreducible polynomials over local fields. They 
defined a system of invariant factors for each monic irreducible polynomial over a local field such that these invariant 
are characteristic. i.e., by using invariants we may describe the set of irreducible polynomials over a local field. There 
some important invariants associated to algebraic elements were defined. one of the most important of such invariants 
is the invariant R"(S) referred to as the main invariant of an algebraic element S over �. They defined the invariant 

R"(S) for algebraic elements S ∈ �\� when (�, �) is a complete discrete rank one valued field. By the main 
invariant of an algebraic element S is defined the supremum of the set �(S, �) defined by  

 �(S, �) = {�̅(S − U)|  U ∈ �, degU < Z[�S}. 
For a complete discrete rank one valued field (�, �), they also introduced in [8] the notions of distinguished pairs, 
complete distinguished chains and lifting of polynomials. After that, many notions and results of [8] have been 
generalized to henselian valued fields or arbitrary valued fields (see for example, [9-11]). For completeness, we give a 
concrete example of a valued field of rank greater than one. 
 
Example: Let �; denote the �-adic valuation (see [3] for the definition of �-adic valuation) of the field ℚ(�) of 
rational functions in � trivial on ℚ with �;(∑  -3�3) = P67{�(-3)} and �: denote the 2-adic valuation of ℚ. For 
any non-zero polynomial )(�) belonging to ℚ(�), we shall denote by )∗  the constant term of the polynomial 
)(�)/��](^(;)). Let � be the mapping from non-zero elements of ℚ(�) to ℤ × ℤ (lexicographically ordered) defined 
on ℚ[�] by  

 �()(�)) = (�;)(�), �:()∗)). 
Then � gives a valuation on ℚ(�). 
 
Let us remark some of the most important notions which have recently been useful tools of valuation theory (see for 
example [12-18]). 

A pair (S, ')  of elements of �  with degS > Z[�'  is called a distinguished pair (more precisely a 
(�, �)-distinguished pair) if ' is an element of smallest degree over � such that �̅(S − ') = R"(S). Distinguished 

pairs give rise to distinguished chains in a natural manner. A chain S = S., S!, … , SO of elements of � is called a 
complete (often called saturated) distinguished chain for S  (with respect to (�, �) ) if (S3 , S3=!)  is a 
(�, �)-distinguished pair for 0 ≤ 6 ≤ Q − 1 and SO ∈ �. The concept of lifting of a polynomial is another important 
tool for investigating the properties of irreducible polynomials with coefficients in valued fields (see, [16], [17] and 
[19] for example). We briefly recall a survey of it. 
If )(�) is a fixed nonzero polynomial in �[�], then using the Euclidean algorithm, each a(�) ∈ �[�] can be 
uniquely represented as a finite sum ∑  3b. a3(�))(�)3 , where for any 6, the polynomial a3(�) is either 0 or has 
degree less than that of )(�). This representation will be referred to as the )-expansion of a(�). 

For a pair (', R) ∈ � × �(�), the valuation cd,e of �(�) defined on �[�] by  

 cd,e(∑  3 f3(� − ')3) = min
3

{�(f3) + 6R},  f3 ∈ �,  

will be referred to as the valuation defined by the pair (', R). The description of cd,e  on �(�) is given by the 
already known theorem stated below (see [20]). 

 

Theorem 3.2  Let cd,e  be the valuation of �(�) defined by a minimal pair (', R) (a pair (', R) ∈ � × �(�) is 
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said to be minimal if whenever g ∈ � satisfies �̅(' − g) ≥ R, then Z[�' ≤ Z[�g) and cd,e  be the valuation of 

�(�) obtained by restricting cd,e . If )(�) is the minimal polynomial of ' over � of degree 7 and h is an element 

of �(�) such that cd,e()(�)) = h, then the following hold. 
 1. For any a(�) belonging to �[�] with )-expansion ∑  3 a3(�))(�)3 , we have cd,e(a(�)) = min3{�(a3(')) +
6h}.  
2. Let [ be the smallest positive integer such that [h ∈ �(�(')) and ℎ(�) belonging to �[�] be a polynomial of 

degree less than 7 with �(ℎ(')) = [h, then the cd,e -residue >)(�)j/ℎ(�)? of ()(�)j/ℎ(�)) is transcendental 

over �(�(')) and the residue field of cd,e  is canonically isomorphic to �(�(')) @>)(�)j/ℎ(�)?A.  

 
Using the canonical homomorphism from the valuation ring of � onto its residue field, one can lift any monic 
irreducible polynomial having coefficients in �(�) to yield a monic irreducible polynomial with coefficients in �. 
The description of the residue field of cd,e given in Theorem 3.2(2) led Popescu and Zaharescu to generalize the 
notation of usual lifting (see [8]). In fact, they introduced the notation of lifting of a polynomial belonging to 
�(�('))[k] (k an indeterminate) with respect to a minimal pair (', R) as follows. 
For a (�, �)-minimal pair (', R), let )(�), 7, h, and [ be as in Theorem 3.2. As in [8], a monic polynomial a(�) 
belonging to �[�] is said to be a lifting of a monic polynomial l(k) belonging to �(�('))[k] having degree 
P ≥ 1 with respect to (', R) if there exists ℎ(�) ∈ �[�] of degree less than 7 such that 
 1.dega(�) = [P7, 
 2.cd,e(a(�)) = Pcd,e(ℎ(�)) = [Ph, 
 3. the cd,e-residue of a(�)/ℎ(�)m is l(()j/ℎ)). 

 
Now, we have necessary tools of valuation theory, let us present the latest irreducibility criteria, which generalize the 
classical and known ones mentioned in the previous section. 
In 1997, Khanduja and Saha by usable tools introduced above generalized the Eisenstein-Dumas-Kurschak criterion 
as follows [21]. 

 
Theorem 3.3  Let � be a valuation of a field K with value group � and )(�) = -.�/ + -!�/0! + ⋯ + -/ be a 

polynomial over �. If  
 1.�(-.) = 0,  
 2.�(-3)/6 ≥ �(-/)/7 for 1 ≤ 6 ≤ 7,  
 3. there does not exit any integer Z > 1 dividing 7 such that �(-/)/7 ∈ �.  
Then )(�) is irreducible over K.  

 
The following example intelligibly shows that how Theorem 3.3 generalizes the former criteria. 
 
Example: Let a(�, �) = �(�)�O + ℎ(�)  be a polynomial over a field n  in independent variables �, �  . If 
�(�), ℎ(�) have no common factors and deg�(�) − degℎ(�) is coprime to Q, then a(�, �) is irreducible over n. 
For the verification, it is sufficient to regard a(�, �)/�(�) as a polynomial in � with coefficients over the field 
� = n(�) with valuation on K defined by �(-(�)/M(�)) = degM(�) − deg-(�) and apply Theorem 3.3. 
 
The following theorem proved by Bhatia and Khanduja presented a different criterion for irreducibility [22]. 

 
Theorem 3.4  Let � be a valuation of a field � with value group the set of integers. Let �(�) = �m + -!�m0! +
⋯ + -m be a polynomial with coefficients in � such that �(-3)/6 ≥ �(-m)/P for 1 ≤ 6 ≤ P − 1. Let D denote 

�fZ(�(-m), P) and M be an element of � with �(M) = �(-m)/D. Suppose that the polynomial oB + (-m/MB) in 

the indeterminate o is irreducible over the residue field of �. Then �(�) is irreducible over �. 
 

It is remarked that a polynomial )!(�!) + ⋯ + )/(�/) with complex coefficients is irreducible provided the degrees 
of )!(�!), … , )/(�/) have greatest common divisor one [23]. The following theorem has its roots in this statement by 
using valuations. 

 
Theorem 3.5 Let f(x) and g(y) be nonconstant polynomials with coefficients in a field �. Let f and f.  denote 

respectively the leading coefficients of )(�) and �(�)  and 7, P  their degrees. If �fZ(P, 7) = D  and if oB −

Journal of Xi'an University of Architecture & Technology

Volume XIII, Issue I, 2021

ISSN No : 1006-7930

Page No: 430



(f./f) is irreducible over �, then so is )(�) − �(�).  
 

In this context, a question can arise is that “when is a translate �(� + -)  of a given polynomial �(�)  with 
coefficients in a valued fleld (�, �) an Eisenstein-Dumas polynomial with respect to �?” In 2010, such polynomials 
have been characterized using distinguished pairs [14]. 

 
Theorem 3.6 Let � be a henselian valuation of a field �. Let �(�) belonging to ��[�] be a monic polynomial of 

degree [ having a root S. Then for an element - of �, �(� + -) is an Eisenstein-Dumas polynomial with respect 

to � if and only if (S, -) is a distinguished pair and �(S)/� is a totally ramified extension of degree [.  
 

Theorem 3.6 has an interesting corollary as follows. 
 

Corollary 3.7 Let �(�) = ∑  j
3p. -3�3 be a monic polynomial with coefficients in a henselian valued field (�, �). 

Suppose that the characteristic of the residue field of � does not divide [. If there exists an element M belonging to 

� such that �(� + M) is an Eisenstein-Dumas polynomial with respect to �, then so is �(� − Kq0!
j ).  

 
 In  [21], Khanduja and Saha gave a generalization of classical Schönemann irreducibility criterion using the theory 
of extensions of a valuation defined on � to a simple transcendental extension of � which was initiated by MacLane 
[24] and developed further by Popescu at el. In 2008, Brown [25] has given a different proof of this result and obtained 
some results about roots of polynomials. In fact, he considered the following sense for generalized Schönemann 
polynomials over a valued field (�, �). 

 
Definition 3.8 A polynomial ℎ(�) ∈ ��[�] is called a generalized Schönemann polynomial over (�, �) if it can be 

written in the form r(�) = 2(�)j + sℎ(�)  where [ ≥ 1;  2(�) ∈ ��[�]  is monic with 2̅(�)  irreducible over 

�(�);  ℎ(�) ∈ ��[�] has degree less than [Z[�2(�); 2̅(�) does not divide ℎ,(�); and, finally, s ∈ �� is nonzero 

and �(s) ∈ Q�(�) for any divisor Q > 1 of [.  

 
If a generalized Schönemann polynomial ) is tame, i.e., a root of ) generates a tamely ramified extension of �, 
Brown gave a best-possible criterion for when the existence in a henselian extension field � of an approximate root of 
) guarantees the existence of an exact root of ) in the extension field of � [25]. More precisely, he established the 
following result about the existence of roots of generalized Schönemann polynomials over valued fields.  
 
Theorem 3.9  Suppose r(�) = 2(�)j + sℎ(�) is a generalized Schönemann polynomial over (�, �) with 2̅(�) 

separable over �(�) and [ not divisible by the characteristic of �. If a henselian extension (�′, �′) of (�, �) has 

an element ' with �′(r(')) > �(s), then r(�) has a root in �′.  
 

In [26], Brown introduced a class of irreducible polynomials 2 and their invariants (see [26, Sec. 1]) and obtained 
some results about roots of polynomials in this class. Actually, he gave a class 2 of monic irreducible polynomials 

over � such that to each �(�) belonging to 2, there corresponds a smallest constant uv belonging to �(�) with the 
property that whenever �̅(�(g)) is more than uv  with �(g) a tamely ramified extension of (�, �), then �(g) 
contains a root of �(�). 

 
Theorem 3.10  Suppose that (�, �) is henselian and ℎ(�) ∈ 2. Suppose that ' is an element of a tamely ramified 

finite degree extension (�′, �′) of (�, �) with �′(ℎ(')) > uw (uw is the invariant of ℎ). Then there is a root of ℎ(�) 

in �′.  
 

In 2010, it was given new results about roots of irreducible polynomials (see [13]), then using the previous results, 
Khanduja and Saha extended the generalized Schönemann-Eisenstein irreducibility citerion in [27]. 

 
Theorem 3.11 Let � be a discrete valuation of � with value group ℤ and x be an element of � with �(x) = 1. 

Let )(�) belonging to ��[�] be a monic polynomial of degree P such that )(̅�) is irreducible over �(�). Let 

a(�) belonging to ��[�] be a monic polynomial having )(�)-expansion ∑  /
3p. y3(�))(�)3. Assume that there exists 

Q ≤ 7 such that x does not divide the content of yO(�), x divides the content of each y3(�), 0 ≤ 6 ≤ Q − 1 and x  

does not divide the content of y.(�).Then a(�) has an irreducible factor of degree QP over the completion (�z, �{) 
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of (�, �) which is a Schönemann polynomial with respect to �{ and )(�).  
 
Theorem 3.12 Let (�, �), x  be as above and a(�) = �/ + -/0!�/0! + ⋯ + -.  be a polynomial over �� 

satisfying the following conditions for an index Q ≤ 7 − 1. 
 1.x|-3  for 0 ≤ 6 ≤ Q − 1, x |-., x|-O.  
 2. The polynomial �/0O + -,/0!�/0O0! + ⋯ + -,O is irreducible over the residue field of �.  
 3.Z̅ ≠ -,O for any divisor Z of -. in ��.  
Then a(�) is irreducible over �.  

 
On the other hand, it was established a generalization of the classical Eisenstein irreducibility criterion by providing a 
bound on the degrees of factors of a polynomial with integer coefficients [28] as follows.  
 
Theorem 3.13  Let )(�) = -/�/ + ⋯ + -. ∈ ℤ[�] be a polynomial and suppose there is a prime 2 such that 2 

does not divide -/ , 2 divides -3 for 6 = 0, … , 7 − 1, and for some r with 0 ≤ r ≤ 7 − 1, 2  does not divide -}. 

Let r.  be the smallest such value of r.  If )(�) = �(�)ℎ(�),  a factorization in ℤ[�] , then 

P67(Z[�(�(�)), Z[�(ℎ(�))) ≤ r..  In particular, for a primitive polynomial )(�) , if r. = 0 , then )(�)  is 

irreducible, and if r. = 1 and )(�) does not have a root in ℚ, then f(x) is irreducible.  

 
This has an interesting corollary about solvability of polynomials by radicals. 
 
Corollary 3.14 Let 2 ≥ 5 be prime and let ).(�) = �: − 2:� + 2 and )!(�) = �: − 22:� + 2 . Then neither 

).(�) nor )!(�) is solvable by radicals.  

 
In 2016, a family of tests for irreducibility of polynomials with coefficients in ℤ was classified [29]. Before, we need 
the following definition. 

 

Definition 3.15 Let � be a prime. Then )(�) ∈ ℤ[�] satisfies condition (�, �) if its (mod �) reduction )(�) is not 

divisible by any irreducible polynomial of degree � in ��[�]. 
 
Theorem 3.16  Let )(�) = -/�/ + ⋯ + -. ∈ ℤ[�] be a polynomial and suppose there is a prime 2 such that 2 

does not divide -/, 2 divides -3 for 6 = 0, … , 7 − 1, and for some r with 1 ≤ r ≤ 7 − 1, 2  does not divide -}. 

Let r. be the smallest such value of r. Suppose furthermore that for some prime � ≠ 2, )(�) satisfies condition 

(�, �) for 1 ≤ � ≤ r.. Then )(�) is irreducible in ℤ[�].  
 

In 2018, Jakhar with defining the following notion extended Theorem 3.16 as follows [30]. 
 

Definition 3.17 Let � be a prime number. Then for a polynomial )(�) ∈ ℤ[�] let )(̅�) denote the polynomial 

obtained by reducing its coefficients modulo �. We say that )(�) satisfies condition (�, �) if )(̅�) is not divisible by 

any irreducible polynomial of degree � in ��[�].  
 

Theorem 3.18 Let )(�) = yO(�)N(�)O + yO0!(�)N(�)O0! + ⋯ + y!(�)N(�) + y.(�) in ℤ[�] be any primitive 

polynomial, where Z[�(y3(�)) < Z[�(N(�)) for all 6 and N(�) is a monic polynomial. Suppose there is a prime 

number 2 such that N(�) is irreducible modulo 2, 2|yO(�), and 2 divides y3(�) for 6 = 0,1, … , Q − 1. Assume 

that not all of the polynomials y.(�), … , yO0!(�) are divisible by 2 , and let r < Q be the smallest integer such that 

2 |y}(�). Suppose either Z[�(yO(�)) + r(Z[�(N(�)) = 0, or for some prime � ≠ 2, the leading coefficient of 

)(�) is not divisible by �  and )(�) satisfies condition (�, �)  for 1 ≤ � ≤ Z[�(yO(�)) + r(Z[�(N(�))) . Then 

)(�) is irreducible in ℤ[�].  

 
See the following example by using the above theorem. 
 
Example: Let -., -! be odd integers divisible by the prime 2 = 5 and suppose 5  does not divide -! but divides 
-.. Let )/(�) = (� + 2)/ + -!(� + 2) + -., where 7 ≥ 2 and 7 ≠ 2 (mod 3). Observe that r = 1 with respect 
to 2 and N(�) = � + 2. One can see that )(̅�) is not divisible by any irreducible polynomial in � [�] of degree 
�, 1 ≤ � ≤ 2. )/(�) is irreducible. 
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By using some tools of valuation theory Theorem 3.13 can be extended with a much weaker hypothesis in a more 
general setup for polynomials having coefficients from the valuation ring of an arbitrary valued field [31]. The 
following theorem also extends the Dumas irreducibility criterion. 

 
Theorem 3.19  Let 2 be a prime number and let )(�) = -/�/ + ⋯ + -. be a polynomial with integer coefficients. 

Suppose that 2 does not divide -O for some Q ≤ 7 and that -� = 0 for some � with 0 ≤ � < Q. For 0 ≤ 6 < Q let 

D3 be the largest positive integer such that 2BC  divides -3  (where D3 = ∞ if -3 = 0). Let r(< Q) be the smallest 

non-negative integer such that  

 min
.�3�O

BC
O03 ≥ B�

O0}. 
Suppose further that D} and (Q − r) are relatively prime. Then )(�) has an irreducible factor of degree at least 
(Q − r)  over ℚ . Moreover, )(�)  has an irreducible factor �(�)  over the field ℚ:  of 2 -adic numbers with 
Q − r ≤ deg�(�) ≤ Q. 

 
Theorem 3.20  Let � be a valuation of a field � with value group �(�) and valuation ring �� having maximal 

ideal ��. Let N(�) belonging to ��[�] be a monic polynomial of degree P which is irreducible modulo ��. Let 

)(�) belonging to ��[�] be a polynomial having N(�)-expansion )(�) = ∑  /
3p. -3(�)N(�)3, where �;(-.(�)) = 0 

and for some � with � ≤ 7, �;(-�(�)) = 0. Let Q be the smallest such value of �. Assume that there exists some 6 
with 6 < Q such that -3(�) = 0. Let r(< Q) be the smallest non-negative integer such that  

 

 min
.�3�O0!

��](KC(;))
O03   |  0 ≤ 6 ≤ Q − 1� = �]K�(;)

O0} . 
 

Suppose that �;(-}(�)) ∈ Z�(�) for any number Z > 1 dividing Q − r. Then the following hold:  
 1.)(�) has an irreducible factor of degree at least (Q − r)P over �. 
 2. If � is a henselian valuation of � and �;()(�)) = 0, then )(�) has an irreducible factor �(�) over � such 
that (Q − r)P ≤ deg�(�) ≤ QP. 
Moreover, the N(�)-expansion of �(�) = M�(�)N(�)� + ⋯ + M.(�) with Q − r ≤ s ≤ Q satisfies �;(M�(�)) = 0, 
and there exists �, 0 ≤ � < s such that �;(-}(�)) = �;(M�(�)), Q − r = s − �, and  
 

 min
.�3��0!

��](LC(;))
�03   |  0 ≤ 6 ≤ s − 1� = �](L�(;))

�0� . 
 
Corollary 3.21  Assume that all the hypotheses above are satisfied. Then for any factorization )!(�)) (�) of )(�) 

over �, we have  
 min{deg)!(�), deg) (�)} ≤ (7 − Q + r)P + deg-/(�). 

 
It may be pointed out that the second assertion of Theorem 3.20 and its corollary extend many previous results proved 
in [25], [27], [32-35]. 
 
Finally, let us see some concrete examples. 
 
Example: Let M ∈ ℤ, M = 0, ±1; �  prime and �|M ; D  be the highest power of q such that �B|M ; - ∈ ℤ, �|- ; 
P ∈ ℤ, (P, D) = 1; 7 ∈ ℤ, 7 > P . Then by Theorem 3.19, )(�) = �/ + -�m + M  has an irreducible factor of 
degree at least P. Moreover,   
• In case 7 = P + 1, either )(�) has a linear factor or it is irreducible over ℚ.  
• Moreover, in this case, )(�) is a product of two irreducible polynomials having degrees 7 − 1 and 1 over ℚ:.  
• Furthermore, in this case, if M = �Bf, any monic linear factor of )(�) must be � − Z for some Z dividing f.  
• In particular, if M = ±�B and - ≠ −1 − M, 1 + (−1)/M, then )(�) is irreducible over ℚ.  

 
Example: Take  

 )(�) = �(� + 3)F + 5(� + 3) + 25(� + 3) + M 
with M = ±5, ±25. Suppose � = ℚ the field and N(�) = � + 3 with the 5-adic valuation ��(5) = 1. Then by 
Corollary 3.21, )(�) is irreducible over ℚ. 
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IV. Conclusion 

 

Polynomials which are the oldest subjects in mathematics are still researched intensively; for example, Eisenstein’s 
irreducibility criterion proved in 1850 has still been generalized to wider domains. The remarkable point of this paper 
is investigating some of the newest results of polynomials in valuation theory. These results show that valuation theory 
has usable tools to obtain new consequences for polynomials. 
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